Аминокислоты Протеиногенные и непротеиногенные аминокислоты Все

Амины – производные аммиака, в молекуле которого один, два или все три атома водорода замещены на углеводородные радикалы.

Действующие вещества, относящиеся к фармакологической группе Белки и аминокислоты

Ниже приведён список действующих веществ, относящихся к фармакологической группе Белки и аминокислоты (коды АТХ и перечень торговых названий, связанных с этой группой).

  • Действующие вещества
  • L-Аспарагиновая кислота
  • Аланил глутамин

    Код АТХ: B05XB02

  • Аргинин

    Код АТХ: A05BA01

  • Аргинина аспартат

    Код АТХ: A05BA01

  • Аргинина глутамат

    Коды АТХ: A05BA01, A05BA

  • Бета-аланин

    Код АТХ: G02CX

  • Валин
  • Гистидин

    Код АТХ: B05BA01

  • Глицин

    Код АТХ: B05CX03

  • Глутаминовая кислота

    Код АТХ: A09AB01

  • Изолейцин

    Код АТХ: B05BA01

  • Кальция глутаминат
  • Кетоаналоги аминокислот

    Код АТХ: V06DD

  • Левокарнитин

    Код АТХ: A16AA01

  • Лейцин
  • Лизин

    Код АТХ: B05XB03

  • Метионин

    Код АТХ: V03AB26

  • Пролин
  • Серин
  • Тирозин
  • Треонин
  • Фенилаланин
  • Цистеин
  • Цистин

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н+.

Читайте также:  Dymatize Nutrition Super Mass Gainer

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Классификация аминокислот по полярности радикалов

1. Неполярные аминокислоты (аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин). Эти аминокислоты гидрофобны. Имеют незаряженный радикал. При сближении в пространстве радикалы этих аминокислот обеспечивают гидрофобное взаимодействие.

2. Полярные, гидрофильные, незаряженные аминокислоты (глицин, треонин, цистеин, тирозин, серин, аспарагин, глутамин). Содержат такие полярные функциональные группы как гидроксильная, сульфгидрильная и амидогруппа. При сближении в пространстве радикалы этих аминокислот образуют водородные связи. Связанные дисульфидной связью два остатка цистеина называют цистином.

3. Кислые аминокислоты (отрицательно заряженные аминокислоты) имеют отрицательный заряд (аспарагиновая и глутаминовая кислоты) при рН 7,0

4. Основные аминокислоты (положительно заряженные аминокислоты) имеют положительный заряд при рН 7,0.

Радикалы аминокислот 3 и 4 групп участвуют в образовании ионных связей.

Классификация аминокислот по полярности радикалов

Аминокислоты классифицируются на заменимые и незаменимые (эссенциальные).

1. Незаменимые (эссенциальные) аминокислоты не могут синтезироваться в организме и должны поступать с пищей. Они необходимы для обеспечения и поддержания роста: аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин (шесть аминокислот 1-й группы, одна – второй и три – четвертой).

2. Заменимые аминокислоты. Организм может синтезировать около 10 аминокислот для обеспечения биологических потребностей, поэтому поступление их с пищей не обязательно (аланин, аспарагин, аспарагиновая кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин, тирозин).

Читайте также:  Меню для семьи из 3 человек на неделю

Аминокислоты, связанные пептидной связью, образуют полипептидную цепь и каждая аминокислота в ней называется аминокислотный остаток. В полипептиде выделяют N-конец (терминальная альфа-аминогруппа) и С-конец (терминальная альфа-карбоксильная группа). Большинство природных полипептидных цепей, содержащих от 50 до 2000 аминокислотных остатков, называют белками (протеинами). Полипептидные цепи меньшей длины называют олигопептидами или просто пептидами. В некоторых белках полипептидные цепи связываются поперечными дисульфидными связями, образованными окислением двух остатков цистеина. Внеклеточные белки часто содержат дисульфидные связи, а внутриклеточные белки часто утрачивают их. В некоторых белках образуются поперечные связи при взаимодействии радикалов других аминокислотных остатков (коллаген, фибрин).

Популярные классификации

В научном мире для систематизации аминокислот используют разные параметры. Существует несколько классификаций, применяемых для этих веществ. Как уже отмечалось, различают заменимые и незаменимые аминокислоты. Меж тем, эта классификация не отражает объективной степени важности каждого из названных веществ, так как все аминокислоты – значимы для человеческого организма.

Другие наиболее популярные классификации

Учитывая радикалы, аминокислоты делятся на:

  • неполярные (аланин, валин, изолейцин, лейцин, метионин, пролин, триптофан, фенилаланин);
  • полярные незаряженные (аспарагин, глутамин, серин, тирозин, треонин, цистеин);
  • полярные с отрицательным зарядом (аспартат, глутамат);
  • полярные с положительным зарядом (аргинин, лизин, гистидин).

Учитывая функциональность группы:

Популярные классификации
  • ароматические (гистидин, тирозин, триптофан, фенилаланин);
  • гетероциклические (гистидин, пролин, триптофан);
  • алифатические (в свою очередь создают еще несколько подгрупп);
  • иминокислота (пролин).

Учитывая биосинтетические семейства аминокислот:

  • семейство пентоз;
  • семейство пирувата;
  • семейство аспартата;
  • семейство серина;
  • семейство глутамата;
  • семейство шикимата.

Согласно иной классификации различают 5 видов аминокислот:

  • серосодержащие (цистеин, метионин);
  • нейтральные (аспарагин, серин, треонин, глутамин);
  • кислые (глутаминовая кислота, аспарагиновая кислота) и основные (аргинин, лизин);
  • алифатические (лейцин, изолейцин, глицин, валин, аланин);
  • ароматические (фенилаланин, триптофан, тирозин).

Помимо того, есть вещества, биологические свойства которых очень напоминают аминокислоты, хотя на самом деле они таковыми не являются. Яркий пример – таурин, названный аминокислотой не совсем верно.

Читайте также:  Особенности влияния протеина и гейнера на мужскую потенцию

Аминокислоты для бодибилдеров

Своя классификация аминокислот существует и у бодибилдеров. В спортивном питании применяют 2 вида питательных веществ: свободные аминокислоты и гидролизаты. К первым принадлежат глицин, глутамин, аргинин, которые характеризуются максимальной скоростью транспортировки. Вторая группа – это протеины, расщепленные к уровню аминокислот. Такие вещества усваиваются организмом значительно быстрее, чем обычные белки, а значит, и мышцы получают свою «порцию» протеинов быстрее.

Также для бодибилдеров особое значение имеют незаменимые аминокислоты. Они важны для поддержания формы мышечной ткани. А поскольку организм не в состоянии синтезировать их самостоятельно, для культуристов важно включать в рацион большое количество мясо-молочной продукции, сою и яйца. Кроме того, желающие нарастить мускулатуру прибегают к биодобавкам, содержащим аминокислоты.

Популярные классификации

Для здоровья и красоты

Помимо того, что аминокислоты играют важную роль в синтезе ферментов и белков, они важны для здоровья нервной и мышечной систем, для выработки гормонов, а также поддержания структуры всех клеток в организме.

А для бодибилдеров аминокислоты являются одним из самых значимых веществ, так как способствуют восстановлению организма. Будучи основой для протеинов, аминокислоты являются незаменимыми веществами для красивых мускул. Эти полезные элементы помогают сделать тренировки более эффективными, а после занятий избавляют от болезненных ощущений. В качестве биодобавок предотвращают разрушение мышечных тканей и являются идеальным дополнением к белковой диете. Также в функции аминокислот входит сжигание жира и подавление чрезмерного аппетита.